Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Virol ; 96(14): e0047722, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1909579

RESUMEN

The mechanisms of colostrum-mediated virus transmission are difficult to elucidate because of the absence of experimental animal models and the difficulties in tissue sample collection from mothers in the peripartum period. Porcine epidemic diarrhea virus (PEDV) is a reemerging enteropathogenic coronavirus that has catastrophic impacts on the global pig industry. PEDV primarily infects neonatal piglets by multiple routes, especially 1- to 2-day-old neonatal piglets. Here, our epidemiological investigation and animal challenge experiments revealed that PEDV could be vertically transmitted from sows to neonatal piglets via colostrum, and CD3+ T cells in the colostrum play an important role in this process. The results showed that PEDV colonizing the intestinal epithelial cells (IECs) of orally immunized infected sows could be transferred to CD3+ T cells located just beneath the IECs. Next, PEDV-carrying CD3+ T cells, with the expression of integrin α4ß7 and CCR10, migrate from the intestine to the mammary gland through blood circulation. Arriving in the mammary gland, PEDV-carrying CD3+ T cells could be transported across mammary epithelial cells (MECs) into the lumen (colostrum), as illustrated by an autotransfusion assay and an MECs/T coculture system. The PEDV-carrying CD3+ T cells in colostrum could be interspersed between IECs of neonatal piglets, causing intestinal infection via cell-to-cell contact. Our study demonstrates for the first time that colostrum-derived CD3+ T cells comprise a potential route for the vertical transmission of PEDV. IMPORTANCE The colostrum represents an important infection route for many viruses. Here, we demonstrate the vertical transmission of porcine epidemic diarrhea virus (PEDV) from sows to neonatal piglets via colostrum. PEDV colonizing the intestinal epithelial cells could transfer the virus to CD3+ T cells located in the sow intestine. The PEDV-carrying CD3+ T cells in the sow intestine, with the expression of integrin α4ß7 and CCR10, arrive at the mammary gland through blood circulation and are transported across mammary epithelial cells into the lumen, finally leading to intestinal infection via cell-to-cell contact in neonatal piglets. Our study not only demonstrates an alternative route of PEDV infection but also provides an animal model of vertical transmission of human infectious disease.


Asunto(s)
Calostro , Infecciones por Coronavirus , Transmisión Vertical de Enfermedad Infecciosa , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Animales Recién Nacidos , Calostro/virología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/veterinaria , Femenino , Transmisión Vertical de Enfermedad Infecciosa/veterinaria , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología , Linfocitos T/virología
2.
J Virol ; 96(9): e0038022, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1794532

RESUMEN

Crossing the endothelium from the entry site and spreading in the bloodstream are crucial but obscure steps in the pathogenesis of many emerging viruses. Previous studies confirmed that porcine epidemic diarrhea virus (PEDV) caused intestinal infection by intranasal inoculation. However, the role of the nasal endothelial barrier in PEDV translocation remains unclear. Here, we demonstrated that PEDV infection causes nasal endothelial dysfunction to favor viral dissemination. Intranasal inoculation with PEDV compromised the integrity of endothelial cells (ECs) in nasal microvessels. The matrix metalloproteinase 7 (MMP-7) released from the PEDV-infected nasal epithelial cells (NECs) contributed to the destruction of endothelial integrity by degrading the tight junctions, rather than direct PEDV infection. Moreover, the proinflammatory cytokines released from PEDV-infected NECs activated ECs to upregulate ICAM-1 expression, which favored peripheral blood mononuclear cells (PBMCs) migration. PEDV could further exploit migrated cells to favor viral dissemination. Together, our results reveal the mechanism by which PEDV manipulates the endothelial dysfunction to favor viral dissemination and provide novel insights into how coronavirus interacts with the endothelium. IMPORTANCE The endothelial barrier is the last but vital defense against systemic viral transmission. Porcine epidemic diarrhea virus (PEDV) can cause severe atrophic enteritis and acute viremia. However, the mechanisms by which the virus crosses the endothelial barrier and causes viremia are poorly understood. In this study, we revealed the mechanisms of endothelial dysfunction in PEDV infection. The viral infection activates NECs and causes the upregulation of MMP-7 and proinflammatory cytokines. Using NECs, ECs, and PBMCs as in vitro models, we determined that the released MMP-7 contributed to the destruction of endothelial barrier, and the released proinflammatory cytokines activated ECs to facilitate PBMCs migration. Moreover, the virus further exploited the migrated cells to promote viral dissemination. Thus, our results provide new insights into the mechanisms underlying endothelial dysfunction induced by coronavirus infection.


Asunto(s)
Infecciones por Coronavirus , Endotelio , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Esparcimiento de Virus , Animales , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Citocinas , Endotelio/virología , Molécula 1 de Adhesión Intercelular/genética , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Metaloproteinasa 7 de la Matriz/metabolismo , Virus de la Diarrea Epidémica Porcina/fisiología , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología , Viremia
3.
Emerg Microbes Infect ; 11(1): 91-94, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1541488

RESUMEN

In order to assess the risk of SARS-CoV-2 infection, transmission and reservoir development in swine, we combined results of an experimental and two observational studies. First, intranasal and intratracheal challenge of eight pigs did not result in infection, based on clinical signs and PCR on swab and lung tissue samples. Two serum samples returned a low positive result in virus neutralization, in line with findings in other infection experiments in pigs. Next, a retrospective observational study was performed in the Netherlands in the spring of 2020. Serum samples (N =417) obtained at slaughter from 17 farms located in a region with a high human case incidence in the first wave of the pandemic. Samples were tested with protein micro array, plaque reduction neutralization test and receptor-binding-domain ELISA. None of the serum samples was positive in all three assays, although six samples from one farm returned a low positive result in PRNT (titers 40-80). Therefore we conclude that serological evidence for large scale transmission was not observed. Finally, an outbreak of respiratory disease in pigs on one farm, coinciding with recent exposure to SARS-CoV-2 infected animal caretakers, was investigated. Tonsil swabs and paired serum samples were tested. No evidence for infection with SARS-CoV-2 was found. In conclusion, Although in both the experimental and the observational study few samples returned low antibody titer results in PRNT infection with SARS-CoV-2 was not confirmed. It was concluded that sporadic infections in the field cannot be excluded, but large-scale SARS-CoV-2 transmission among pigs is unlikely.


Asunto(s)
COVID-19/veterinaria , SARS-CoV-2/fisiología , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología , Animales , Exposición a Riesgos Ambientales , Países Bajos/epidemiología , Vigilancia en Salud Pública , Estudios Retrospectivos , Porcinos
4.
Viruses ; 13(1)2020 12 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1025055

RESUMEN

Bats are often claimed to be a major source for future viral epidemics, as they are associated with several viruses with zoonotic potential. Here we describe the presence and biodiversity of bats associated with intensive pig farms devoted to the production of heavy pigs in northern Italy. Since chiropters or signs of their presence were not found within animal shelters in our study area, we suggest that fecal viruses with high environmental resistance have the highest likelihood for spillover through indirect transmission. In turn, we investigated the circulation of mammalian orthoreoviruses (MRVs), coronaviruses (CoVs) and astroviruses (AstVs) in pigs and bats sharing the same environment. Results of our preliminary study did not show any bat virus in pigs suggesting that spillover from these animals is rare. However, several AstVs, CoVs and MRVs circulated undetected in pigs. Among those, one MRV was a reassortant strain carrying viral genes likely acquired from bats. On the other hand, we found a swine AstV and a MRV strain carrying swine genes in bat guano, indicating that viral exchange at the bat-pig interface might occur more frequently from pigs to bats rather than the other way around. Considering the indoor farming system as the most common system in the European Union (EU), preventive measures should focus on biosecurity rather than displacement of bats, which are protected throughout the EU and provide critical ecosystem services for rural settings.


Asunto(s)
Quirópteros , Porcinos , Animales , Biodiversidad , Quirópteros/virología , Virus ADN/clasificación , Virus ADN/genética , Ecosistema , Filogenia , Virus ARN/clasificación , Virus ARN/genética , Virus Reordenados/genética , Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología , Virosis/veterinaria
5.
J Virol ; 95(4)2021 01 28.
Artículo en Inglés | MEDLINE | ID: covidwho-1075935

RESUMEN

Swine influenza A virus (swIAV) infection causes substantial economic loss and disease burden in humans and animals. The 2009 pandemic H1N1 (pH1N1) influenza A virus is now endemic in both populations. In this study, we evaluated the efficacy of different vaccines in reducing nasal shedding in pigs following pH1N1 virus challenge. We also assessed transmission from immunized and challenged pigs to naive, directly in-contact pigs. Pigs were immunized with either adjuvanted, whole inactivated virus (WIV) vaccines or virus-vectored (ChAdOx1 and MVA) vaccines expressing either the homologous or heterologous influenza A virus hemagglutinin (HA) glycoprotein, as well as an influenza virus pseudotype (S-FLU) vaccine expressing heterologous HA. Only two vaccines containing homologous HA, which also induced high hemagglutination inhibitory antibody titers, significantly reduced virus shedding in challenged animals. Nevertheless, virus transmission from challenged to naive, in-contact animals occurred in all groups, although it was delayed in groups of vaccinated animals with reduced virus shedding.IMPORTANCE This study was designed to determine whether vaccination of pigs with conventional WIV or virus-vectored vaccines reduces pH1N1 swine influenza A virus shedding following challenge and can prevent transmission to naive in-contact animals. Even when viral shedding was significantly reduced following challenge, infection was transmissible to susceptible cohoused recipients. This knowledge is important to inform disease surveillance and control strategies and to determine the vaccine coverage required in a population, thereby defining disease moderation or herd protection. WIV or virus-vectored vaccines homologous to the challenge strain significantly reduced virus shedding from directly infected pigs, but vaccination did not completely prevent transmission to cohoused naive pigs.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza/administración & dosificación , Infecciones por Orthomyxoviridae/transmisión , Enfermedades de los Porcinos/transmisión , Esparcimiento de Virus , Adyuvantes Inmunológicos/administración & dosificación , Animales , Femenino , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/prevención & control , Porcinos , Enfermedades de los Porcinos/prevención & control , Vacunación , Vacunas Atenuadas/administración & dosificación , Vacunas de Productos Inactivados/administración & dosificación
6.
Emerg Infect Dis ; 26(2): 255-265, 2020 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1008951

RESUMEN

Coronaviruses cause respiratory and gastrointestinal diseases in diverse host species. Deltacoronaviruses (DCoVs) have been identified in various songbird species and in leopard cats in China. In 2009, porcine deltacoronavirus (PDCoV) was detected in fecal samples from pigs in Asia, but its etiologic role was not identified until 2014, when it caused major diarrhea outbreaks in swine in the United States. Studies have shown that PDCoV uses a conserved region of the aminopeptidase N protein to infect cell lines derived from multiple species, including humans, pigs, and chickens. Because PDCoV is a potential zoonotic pathogen, investigations of its prevalence in humans and its contribution to human disease continue. We report experimental PDCoV infection and subsequent transmission among poultry. In PDCoV-inoculated chicks and turkey poults, we observed diarrhea, persistent viral RNA titers from cloacal and tracheal samples, PDCoV-specific serum IgY antibody responses, and antigen-positive cells from intestines.


Asunto(s)
Infecciones por Coronavirus/virología , Deltacoronavirus/aislamiento & purificación , Enfermedades de los Porcinos/epidemiología , Animales , Pollos , Infecciones por Coronavirus/transmisión , Porcinos , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología , Pavos , Estados Unidos/epidemiología
7.
Vet Med Sci ; 6(3): 527-534, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-888146

RESUMEN

BACKGROUND: While porcine biological hazards have had the potential to be transmitted through feed and feed mills for decades, the emerging threat of foreign animal disease has elevated the concern that these may enter or be transmitted throughout the domestic swine herd via a feed vehicle. OBJECTIVE: The goal of this review was to describe the current classification for emerging porcine biological pathogen transmission through the feed supply chain so resources can be best directed towards those of highest risk. METHODS: By assessing the pathogen severity to pigs and the probability of pathogen transmission through feed, an overall risk can be established using a hazard analysis matrix. RESULTS: There is negligible risk for feed-based transmission of a transmissible spongiform encephalopathy, Trichinella spiralis, Toxoplasma gondii, Salmonella Choleraesuis, Salmonella spp. except Choleraesuis and I 4,[5],12:i:-, porcine deltacoronavirus, Senecavirus A, mammalian orthoreovirus 3, foot and mouth disease virus, classical swine fever virus or Chinese pseudorabies virus. However, the combined severity and probability of Salmonella enterica serotype I 4,[5],12:i:-, porcine epidemic diarrhoea virus and African swine fever virus warrant a moderate risk characterization for transmission through the US feed supply chain. CONCLUSIONS: This risk can be maintained below critical status by minimizing the likelihood that a pathogen can enter the feed supply chain, such as by excluding high-risk ingredients from facilities, extending biosecurity to mills, and considering proactive mitigation strategies. In reality, all these actions may be necessary to prevent the detrimental transmission of porcine biological hazards into the US swine herd through the feed supply chain.


Asunto(s)
Enfermedades de los Porcinos/transmisión , Alimentación Animal/análisis , Animales , Sus scrofa , Porcinos
8.
Emerg Microbes Infect ; 9(1): 2278-2288, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-811383

RESUMEN

The emergence of SARS-CoV-2 has resulted in an ongoing global pandemic with significant morbidity, mortality, and economic consequences. The susceptibility of different animal species to SARS-CoV-2 is of concern due to the potential for interspecies transmission, and the requirement for pre-clinical animal models to develop effective countermeasures. In the current study, we determined the ability of SARS-CoV-2 to (i) replicate in porcine cell lines, (ii) establish infection in domestic pigs via experimental oral/intranasal/intratracheal inoculation, and (iii) transmit to co-housed naïve sentinel pigs. SARS-CoV-2 was able to replicate in two different porcine cell lines with cytopathic effects. Interestingly, none of the SARS-CoV-2-inoculated pigs showed evidence of clinical signs, viral replication or SARS-CoV-2-specific antibody responses. Moreover, none of the sentinel pigs displayed markers of SARS-CoV-2 infection. These data indicate that although different porcine cell lines are permissive to SARS-CoV-2, five-week old pigs are not susceptible to infection via oral/intranasal/intratracheal challenge. Pigs are therefore unlikely to be significant carriers of SARS-CoV-2 and are not a suitable pre-clinical animal model to study SARS-CoV-2 pathogenesis or efficacy of respective vaccines or therapeutics.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/veterinaria , Pandemias/veterinaria , Neumonía Viral/veterinaria , Enfermedades de los Porcinos/virología , Animales , Betacoronavirus/genética , Betacoronavirus/inmunología , COVID-19 , Línea Celular , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/transmisión , Modelos Animales de Enfermedad , Reservorios de Enfermedades , Susceptibilidad a Enfermedades , Femenino , Masculino , Neumonía Viral/inmunología , Neumonía Viral/patología , Neumonía Viral/transmisión , ARN Viral/sangre , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , SARS-CoV-2 , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/transmisión , Cultivo de Virus , Replicación Viral , Secuenciación del Exoma
9.
Virus Res ; 285: 198024, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-276152

RESUMEN

Discovered in 2017, swine enteric alphacoronavirus (SeACoV), also known as swine acute diarrhea syndrome coronavirus (SADS-CoV) or porcine enteric alphacoronavirus (PEAV), is the fifth porcine CoV identified in diarrheal piglets. The presumed name "SADS-CoV" may not be appropriate since current studies have not provided strong evidence for high pathogenicity of the virus. SeACoV was the most recently recognized CoV of potential bat origin prior to the novel human severe acute respiratory syndrome CoV 2 (SARS-CoV-2), associated with the pandemic CoV disease 2019 (COVID-19). Although SeACoV is recognized as a regional epizootic virus currently, it possesses the most extensive cell species tropism in vitro among known CoVs. This review summarizes the emergence of SeACoV and updates the research progress made from 2017 to early 2020, mainly focusing on the etiology, epidemiology, evolutionary perspective, potential for interspecies transmission, pathogenesis and diagnosis.


Asunto(s)
Alphacoronavirus , Infecciones por Coronavirus/veterinaria , Enfermedades de los Porcinos/virología , Alphacoronavirus/genética , Alphacoronavirus/patogenicidad , Alphacoronavirus/ultraestructura , Animales , Línea Celular , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Genoma Viral , Humanos , Epidemiología Molecular , Especificidad de la Especie , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/transmisión , Tropismo Viral
10.
APMIS ; 128(6): 451-462, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-155071

RESUMEN

Bacteria and viruses were analysed in the upper respiratory tract of symptomatic pig farmers and their domestic pigs. Eighty six human nasal and 495 (50 pools) porcine snout swabs were collected in Schleswig-Holstein, Germany. Staphylococcus (S.) aureus (62.8%, 54/86), human rhino- and coronaviruses (HRV, 29.1%, 25/86; HCoV, 16.3%, 14/86) were frequently detected in humans, while Haemophilus parasuis (90.0%, 45/50), Mycoplasma hyorhinis (78.6%, 11/14), Enterovirus G (EV-G, 56.0%, 28/50) and S. aureus (36.0%, 18/50), respectively, were highly prevalent in pigs. The detection of S. aureus in human follow-up samples indicates a carrier status. The methicillin-resistant phenotype (MRSA) was identified in 33.3% (18/54) of nasal swabs and in one of 18 (5.6%) pooled snout swabs that were tested positive for S. aureus. Strains were indicative of the livestock-associated clonal complex CC398, with t011 being the most common staphylococcal protein A type. Enterobacterales and non-fermenters were frequently isolated from swabs. Their detection in follow-up samples suggests a carrier status. All were classified as being non-multiresistant. There was no example for cross-species transmission of viruses. In contrast, transmission of S. aureus through occupational contact to pigs seems possible. The study contributes to the 'One Health' approach.


Asunto(s)
Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/virología , Infecciones Estafilocócicas/veterinaria , Sus scrofa/microbiología , Sus scrofa/virología , Enfermedades de los Porcinos/epidemiología , Animales , Portador Sano , Humanos , Ganado , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Mucosa Nasal/microbiología , Mucosa Nasal/virología , Enfermedades Profesionales/microbiología , Prevalencia , Infecciones del Sistema Respiratorio/epidemiología , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/transmisión , Porcinos , Enfermedades de los Porcinos/microbiología , Enfermedades de los Porcinos/transmisión , Enfermedades de los Porcinos/virología , Virosis/epidemiología , Virosis/transmisión , Virosis/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA